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It is shown that the Kronecker product can be applied to construct not only new 
Lax representations, but also new zero-curvature representations of integrable 
models. A characteristic difference between continuous and discrete zero- 
curvature equations is pointed out. 

Lax and zero-curvature representations play important roles in studying 
nonlinear integrable models in theoretical physics. It is based on such repre- 
sentations that the inverse scattering transform is developed (see, e.g., Ablow- 
itz and Clarkson, 1991). They may also provide a great deal of information 
on, e.g., integrals of motion, master symmetries, and Hamiltonian formula- 
tions. There exist many integrable models that possess a Lax or zero-curvature 
representation (Faddeev and Takhtajan, 1987; Das, 1989). Typical examples 
are the Toda lattice (Flaschka, 1974) and AKNS systems (Ablowitz et  al.,  
1974), including the KdV equation and the nonlinear Schr'Odinger equation. 

In this paper we present new Lax representations and new zero-curvature 
representations by using the Kronecker product of matrices, motivated by 
recent work of Steeb and Heng (1996). The Kronecker product itself has 
nice mathematical properties and important applications in many fields of 
physics, for example, statistical physics, quantum groups, etc. (Steeb, 1991). 
Our result for the zero-curvature representation also provides us with a 
characteristic difference between continuous and discrete zero-curvature 
equations. 
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Let IM denote the unit matrix of order M, M ~ 7/. For two matrices A 
= (aiy)m, B = (bkt)rs, the Kronecker product A | B is defined by (Steeb, 1991) 

A | B = (a i jB) (pr) •  (1) 

or equivalently by (Hoppe, 1992) 

(A ~ B)ij,kl = aikbjl (2) 

Evidently we have a basic relation on the Kronecker product (Steeb, 1991; 
Hoppe, 1992) 

(A ~ B)(C | D) = (AC) ~ (BD) (3) 

provided that the matrices AC and BD make sense. This relation will be 
used to show a new structure of Lax and zero-curvature representations of 
integrable models. 

Theorem 1 (Lax representation). Assume that an integrable model (con- 
tinuous or discrete) has two Lax representations 

Lit = [Am, Ll], L2, = [A2, L2] (4) 

where L~, A~ and L2, A2 are M • M and N X N matrices, respectively. Define 

L3 = OtlLI ~/-'2 + ot2(Ll | IN + IM ~ 1-,2), A3 = Al (~ IN + IM (~ A2 
(5) 

where oq, Ore are arbitrary constants. Then the same integrable model has 
another Lax representation, L3t = [A3, L3]. 

Proof. First of all, we have 

Lst = Otl(Llt {~ L2 + LI t~) L2t ) + ot2(Ll t @ IN + IM | Let) (6) 

On the other hand, using (3), we can calculate that 

[A3, L3] = otl([Al, L1] @/-/2 + LI | [A2, L2]) 

+ ct2([Al, Ll] @ IN + IM @ [A2,/12]) 

Now we easily find that the equalities defined by (4) imply L3, = [A3, L3]. �9 

When a2 = 0 the result obtained is exactly that in Steeb and Heng 
(1996). When etl = 0 we get a new Lax representation for a given integrable 
model, starting from two known Lax representations. Integrals of motion 
may also be generated from the new Lax representation, because we have 

F U = tr(ot. 1 t ]  ~ ~ "{- ot.2(L ~ (~ IN + IM | I_~)) 

= eq tr(L]) tr(L~) + oLz(N tr(L'~) + M tr(~)) (7) 
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where we have used t r (A|  B) = tr(A) tr(B) (Steeb, 1991) and (L])t = [AI ,  

Lil], (Lig), = [A2,/-)z]. 

Theorem 2 (Continuous zero-curvature representation). Assume that a 
continuous integrable model has two continuous zero-curvature represen- 
tations 

U l t -  Vlx -[- [UI, Vl] = 0, U2, - V2x -[- [U2, V2] = 0 (8) 

where U1, VI and U2, V2 are M X M and N X N matrices, respectively. Define 

U3 = Ul t~ IN + IMt~ U2, V3 = VI ~ IN + I M ~  V2 (9) 

Then the same integrable model has another continuous zero-curvature 
representation 

u3, - v3x + [u3, v3] = 0 (10) 

Proof. The proof is also a direct computation. We first have 

U3t = Ul, | IN + IM | U2, 

U3x = Uix | Ii~ + l u g  Uz~ 

Second, using (3), we can obtain that 

[Us, V3] = [U1, V1] @ In + lu  | [U2, V2] (11) 

Therefore we see that (10) is true once two equalities defined by (8) hold. �9 

We remark that when we choose 

u3 = u~ | u2 

the third zero-curvature representation (10) is not guaranteed to be true. An 
example will be displayed below. 

Theorem 3 (Discrete zero-curvature representation). Assume that a dis- 
crete integrable model has two discrete zero-curvature representations 

Ult = (EVI)U1 - UIV 1, U2t = (EV2)U2 - U2V2 (12) 

where E is the shift operator, U1, V1 are M • M matrices, and U2, V2 are N 
X N matrices. Define 

U 3 = U 1 @ U2, V 3 ~-- V 1 @ I N -[- I M @ V 2 (13) 

Then the same integrable model has another discrete zero-curvature 
representation 

U3t = (EV3)U3 - 1-131/3 (14) 



700 Ma and Guo 

Proof. Similarly, we first have 

U3t = UIt @ U 2 + U 1 @ U2, (15) 

On the other hand, we may calculate that 

(EV3)U3 - U3V 3 = ((EVO @ IN + I m •  (EV2))(U~ t~ U2 ) 

-- (UI ~ U2)(VI ~ IN + Ig | V2) 

= ((EVOUO | Uz + UI (~ ((EV2)U2) 

-- (UIVI) ~ U 2 - U1 ~ (U2V2) 

= ((EVI)UI - U1VI) @ U 2 + U 1 @ ((EV2)U2 - U2V2) 

In the second equality above, we used the basic relation (3). Hence we find 
that (14) holds if we have (12). �9 

We remark that when we choose 

Us = UI ~ IM + I N Q  U2 

the third discrete zero-curvature representation (14) is not guaranteed to be 
true. An example will also be given below. This is opposite to the result in 
the continuous case. It shows us a characteristic difference between continuous 
and discrete zero-curvature equations. 

In what follows we show some concrete examples to illustrate the use 
of  the above Kronecker product technique. Actually once we have a Lax 
representation or a zero-curvature representation, we can obtain a new repre- 
sentation after choosing two required representations to be this known one. 
Another new representation may be constructed by use of  this new representa- 
tion and the process may be infinitely extended. This also tells us that there 
exist infinitely many Lax representations or zero-curvature representations 
once there exists one representation for a given integrable model. The con- 
struction procedure will be shown in the following examples and can be 
easily generalized to other integrable models; see, for example, Calogero and 
Nucci (1991), Drinfel 'd and Sokolov (1984), Ma (1993b), Ragnisco and 
Santini (1990), and Tu (1990). 

Example 1. We consider periodic Toda lattice (Flaschka, 1974) 

ait  = a i (b i+ l  - b i ) ,  bit = 2(a 2 - a,2-1), ai+N = ai, bi+N = bi 
(16) 

which is a Hamiltonian system with Hamiltonian 

H(ql, q2 . . . . .  qN, Pl, P2 . . . . .  PN) = ~ ~ p2 + eqi-qi+l 
i=1 i=1 
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under the Flaschka transformation 

ai = �89 qi-qi+ 1, bi  = - � 8 9  

The Toda lattice (16) has a Lax representation with 

L =  

bl al 0 . . . . . .  aN 
al b2 a2 . . . . . .  0 

0 a2 b3 . . . . . .  0 
�9 . . .  . . .  �9 

: " . .  ~ 1 7 6 1 7 6  
a N -  l 

aN  . . . . . . . . .  a N -  1 bN 

(17) 

A = 

0 
- - a  1 

0 
! 

aN 

a I 0 . . . . . .  

0 a2 . . . . . .  
- - a2  0 . . . . . .  

~ 1 7 6  ~  
�9 , 

" . ~  oo 

. . . . . . . . . .  aN- 1 

- a  N 

0 
0 

a N -  1 
0 

(18) 

Through Theorem 1, we obtain a new Lax representation with 

Lnew = eq L | L + et2(L t~ IN + IN | L), A.ew = A ~ IN + IN | A 
(19) 

Here eq, et2 are two arbitrary constants and thus the Toda lattice (16) has 
many different Lax representations. By (7), new integrals of motion may be 
generated, which are all functions of Fi = tr(Li). 

Example 2. The nonlinear SchrOdinger model (Ablowitz et al., 1974; 
Ma and Strampp, 1994) 

p, = _�89 + p2q 
(20) 

qt = �89 - pq2 

has a continuous zero-curvature representation with 

( - :  P) ~{-h2+�89 �89 k 2Kp-lpx\- ~p / U = , V = 12_eq] (21) 
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This model has infinitely many symmetries and integrals of motion. According 
to Theorem 2, we obtain new continuous zero-curvature representations with 

U n o w = U | 1 7 4  

= o o 

q q 

V.ow= V|  + /2| v 

[-2h2 + pq hp---}px hp-�89 0 
| kq+�89 0 2 0 h p - � 8 9  x 

I 
= 1  hq ; �89 0 0 hp --lp~l 

hq + �89 Xq + �89 2 h 2 - p q /  

(22) 

(23) 

or with 

(0 0)  now o) U n e w = U | 1 7 4  U" 

The spectral operator defined by (22) is similar to one appearing in Khasilev 
(1992) and we may also discuss its binary nonlinearization [for the cases of 
2 • 2 and 3 • 3 matrices see Ma and Strampp (1994) and Ma et al. (1996)]. 
However, the nonlinear Schr6dinger model (20) does not have the continuous 
zero-curvature representation with 

Unew = U | U, Vnew = V | /2 + /2 | V (25) 

Example 3. We consider the Volterra lattice (Fuchssteiner and Ma, 1996) 

ut = u(# -1) - u<l)), u (m) = Emu (26) 

More examples of lattices may be found in Steeb (1991), Ragnisco and 
Santini (1990), and Tu (1990), for example, the one-dimensional isotropic 
Heisenberg model. The lattice (26) has a discrete zero-curvature representa- 
tion with 

U =  h 1 0 ' V =  1 - � 8 9  (-1) (27) 

By Theorem 3 we obtain new discrete zero-curvature representations with 

(0 U 0) Vnew ~ V| +/2 | ( O O) (28) Un~ = U |  U '  
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or with 

0 

0 
(29) 

The latter is made up of two 24 • 24 matrices. To find directly these two 
matrices requires much complicated calculation. Note that we do not have 
the discrete zero-curvature representation with 

Uncw = U @ I2 + I2 @ U, Vnew = V @ I2 +12 @ V (30) 

for the Volterra lattice (26). This is not strange and shows the difference 
between the two kinds of  zero-curvature representations. 

Finally we present an open problem. We denote the Gateaux derivative 
K'[S] by K'[S] = (OlOe)K'(u + eS)le=o. We have already established the 
following result (Ma, 1992, 1993a; Fuchssteiner and Ma, 1996): If ut = K(u), 
ut = S(u) have Lax representations 

Lt = [Al, L], Lt = [A2, L] 

or zero-curvature representations 

U, - V~, + [U, V1] = 0 [or U, = (EVOU - UVt] 

U,  - -  V2x -'[- [U, V2] = 0 [or U, = (EV2)U - UV2] 

respectively, then the product model ut = [K, S] :=  K'[S] - S ' [K]  has 
Lax representation 

Lt = [A3, L], As = A~[S] - A~[K] + [Al, A2] 

or zero-curvature representation 

tit - V3x + [U, V3] = 0 [or Ut = (EV3)U - UV3], 

V3 = V~[S] - V~[K] + [V~, V21 

Therefore ut = [K, S] may have a Lax representation with the spectral 
operator and the Lax operator determined by the Kronecker product. For 
example, in the case of the Lax representation we have 

/-,new = a l L  | L + ot2(L ~ IM + IM | L) 

Anew = (A~[SI - A~[K] + [A~, A21) | + IM | (A~[SI - A~[K] + [A~, A2]) 
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where M is the order of the matrix L. Product models may be applied to 
construct symmetries of nonlinear models and thus they are important. Let 
us now suppose that two models ut = K ( u ) ,  ut = S (u )  have two completely 
different Lax representations 

Lit -- [A1, Ll], t2t = [A2, Z2] 

or two completely different zero-curvature representations 

Ult - Vlx q- [U1, Vl] = 0 [or Ut = (EV1)U - UVl]  

U2t - V2~ + [U2, V2] = 0 [or Ut = ( E V 2 ) U  - UV2] 

Here L1 and/--2 or U~ and U2 are not equal, and sometimes they may have 
different matrix orders. The problem is to determine the corresponding repre- 
sentation for the product model ut = [K, S ]. It seems to us that the required 
spectral operator matrix ~ew or U, ew should be represented by some Kronecker 
product involving L1, L2 or Ul, U2 and K, S. 
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